Rosuvastatin promotes osteoblast differentiation and regulates SLCO1A1 transporter gene expression in MC3T3-E1 cells.
نویسندگان
چکیده
Rosuvastatin (RSV) is a synthetic statin with favourable pharmacologic properties including minimal metabolism, hepatic selectivity and enhanced inhibition of HMG-CoA reductase. An induction of osteoblast differentiation has been reported in vitro with lipophilic statins but not with RSV, which, like pravastatin, is relatively hydrophilic compared with other statins. To mediate its action, an active transport mechanism via solute carrier (SLC) transporters from the SLC16, SLC21/SLCO and SLC22 gene family - specifically Slc16a1, Slco1a1, Slco2b1 and Slc22a8 - may be present to allow effective entry in osteoblastic cells. In this study, we demonstrate that RSV induced osteoblast differentiation, as measured by increased BMP-2 gene expression and secretion, and ALP activity in MC3T3-E1 osteoblast cells, without significantly affecting cell proliferation within the concentration range of 0.001-10 μM. Low concentrations of RSV (0.001-0.01 μM) were protective against cell death whereas higher concentrations (10-100 μM) showed cytotoxicity. Moreover, MC3T3-E1 osteoblasts expressed high levels of Slco1a1 and Slc16a1 mRNA and low levels of Slco2b1 and Slc22a8 mRNA, when compared with kidney and liver tissues from mice. Slco1a1 gene expression increased 12-fold during osteoblast differentiation and was further regulated after RSV treatment. In conclusion, as for other statins, RSV promotes osteoblast differentiation, and also, demonstrated for the first time, regulates the expression of Slco1a1, which may constitute the transport system for RSV across the cell membrane in mature osteoblasts.
منابع مشابه
TWEAK/Fn14 interaction regulates RANTES production, BMP-2-induced differentiation, and RANKL expression in mouse osteoblastic MC3T3-E1 cells
Tumour necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK), a member of the TNF family, is a multifunctional cytokine that regulates cell growth, migration, and survival principally through a TWEAK receptor, fibroblast growth factor-inducible 14 (Fn14). However, its physiological roles in bone are largely unknown. We herein report various effects of TWEAK on mouse osteoblastic MC3T3-E1...
متن کاملNeuropeptide Y1 Receptor Regulates Glucocorticoid-Induced Inhibition of Osteoblast Differentiation in Murine MC3T3-E1 Cells via ERK Signaling
High dose glucocorticoid (GC) administration impairs the viability and function of osteoblasts, thus causing osteoporosis and osteonecrosis. Neuropeptide Y1 receptor (Y1 receptor) is expressed in bone tissues and cells, and regulates bone remodeling. However, the role of Y1 receptor in glucocorticoid-induced inhibition of osteoblast differentiation remains unknown. In the present study, osteobl...
متن کاملGene array analysis of osteoblast differentiation.
We have used gene array technology to chart changes in gene expression during differentiation of the mouse calvarial-derived MC3T3-E1 cell line to an osteoblast-like phenotype. Expression was analyzed on a mouse gene array panel of 588 cDNAs representing tightly regulated genes with key roles in various biological processes. When compared with NIH3T3 fibroblasts, MC3T3-E1 cells showed generally...
متن کاملPAPSS2 Promotes Alkaline Phosphates Activity and Mineralization of Osteoblastic MC3T3-E1 Cells by Crosstalk and Smads Signal Pathways
Several studies have indicated that PAPSS2 (3'-phosphoadenosine-5'-phosphosulfate synthetase 2) activity is important to normal skeletal development. Mouse PAPSS2 is predominantly expressed during the formation of the skeleton and cartilaginous elements of the mouse embryo and in newborn mice. However, the role and mechanism of PAPSS2 in bone formation remains largely unidentified. By analyzing...
متن کاملTreatment of icariin promotes osteoblast MC3T3-E1 proliferation and differentiation in vitro, potentially owing to its role in increasing BMP-2 protein expression. Icariin
Previous studies suggest that icariin has anabolic effects on bone, but the mechanisms are unknown. We aimed to investigate the osteogenic effects of icariin in an undifferentiated osteoblast cell line by detecting cell morphology, viability, cell cycling and bone morphogenetic protein-2 (BMP-2) expression. We treated pre-osteoblastic MC3T3-E1 cells with different concentrations of icariin [0 (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology
دوره 26 4-5 شماره
صفحات -
تاریخ انتشار 2010